
# D类放大器

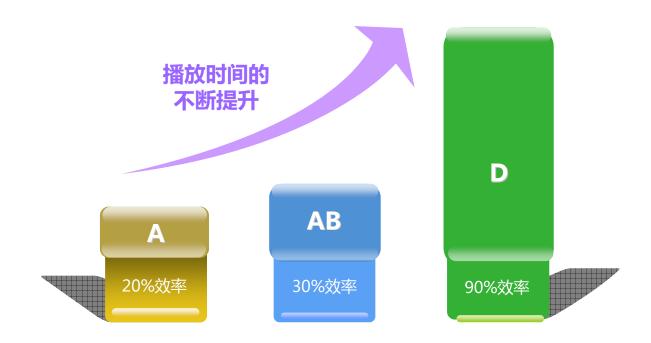


## 挑战:功耗、散热、播放时间



MP3播放、FM收听、游戏、上网、CMMB等娱乐功能在手机中的广泛应用,极大丰富了人们的日常生活,但同时为手机设计人员带来了功耗、散热、播放时间等更为严峻的挑战。

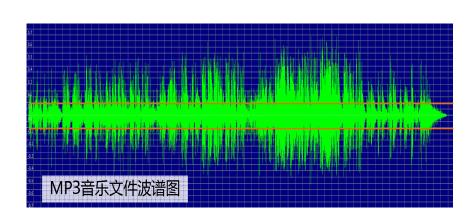


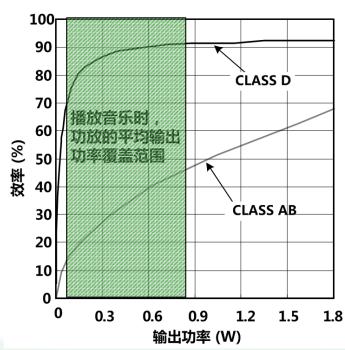

# 高效率意味着什么?





## 音频功放发展趋势

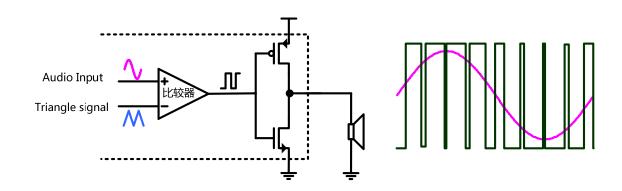



## 音乐播放时间对比



- ∮ D类功放播放时间比AB类功放至少可以延长2倍。

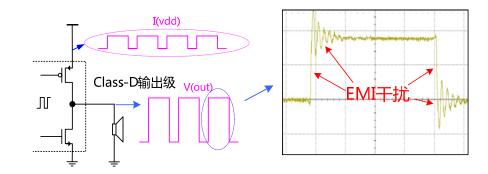





## D类功放工作原理



- ◆ D类放大器工作原理 通过PWM调制将模拟音频信号转化为高频脉冲信号,利用扬声器及人耳固有滤波特 性将脉冲信号还原为音频信号。
- ∮ D类放大器特性
  - ▶ 高达90%的效率: D类的开关工作方式使得其功耗非常小
  - ▶ EMI干扰:源自高频开关的EMI干扰是D类设计中一个主要的挑战




D类放大器工作原理

## EMI-D类功放设计挑战

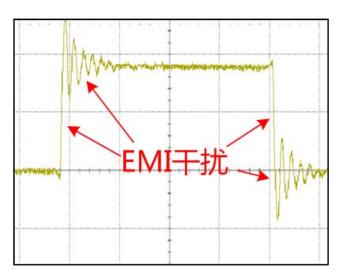


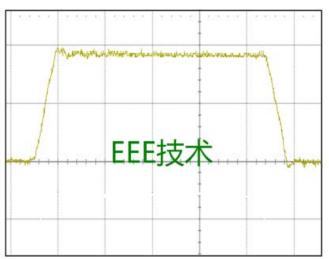
- ∮ EMI来源:覆盖频段 1MHz~1GHz
  - ➤ 250KHz~1.5MHz高频开关信号
  - > 纳秒级边沿切换,过冲振荡



∮ 手机应用敏感频段

| 频段   | 范围                                 |  |  |
|------|------------------------------------|--|--|
| FM   | 87MHz ~ 108MHz                     |  |  |
| 模拟电视 | 48MHz ~ 865MHz                     |  |  |
| СММВ | 470MHz ~ 566MHz<br>606MHz ~ 798MHz |  |  |
| CDMA | 825MHz~880MHz                      |  |  |
| GSM  | 900MHz/1800MHz                     |  |  |





# EEE--超低EMI



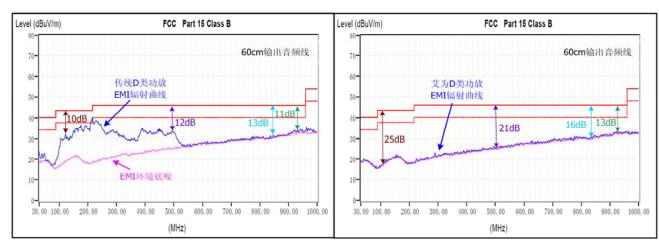
## 艾为EEE技术







传统D类功放


艾为D类功放(EEE技术)

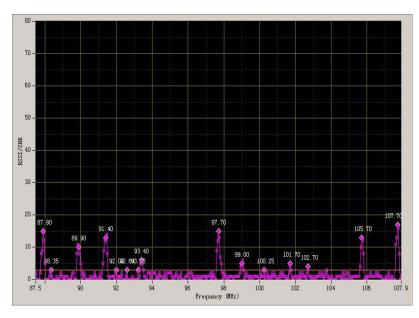
## 艾为EEE技术



### 

| 频段   | 范围              | 传统D类 | 艾为D类 | 优势   |
|------|-----------------|------|------|------|
| FM   | 87MHz ~ 108MHz  | 10dB | 25dB | 15dB |
| 模拟电视 | 48MHz ~ 865MHZ  | 10dB | 25dB | 15dB |
| СММВ | 470MHz ~ 798MHz | 12dB | 21dB | 9dB  |
| CDMA | 825MHz~880MHz   | 13dB | 16dB | 3dB  |
| GSM  | 900MHz/1800MHz  | 11dB | 13dB | 2dB  |




传统D类功放 EMI测试结果

Control of the Contro

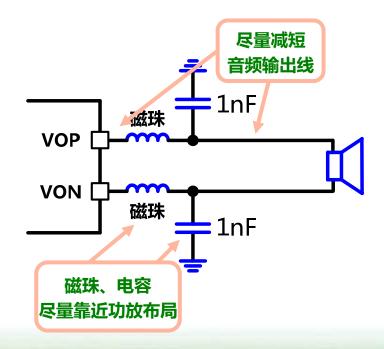
艾为D类功放(EEE技术) EMI测试结果

### FM频段EMI测试





80 - 60 - 60 - 50 - 50 - 91.40 91.40 105.70 107.70 20 - 103.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 107.70 10

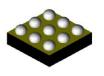

传统D类功放 FM信号接收信噪比

艾为D类功放(EEE技术) FM信号接收信噪比

## PCB设计EMI抑制



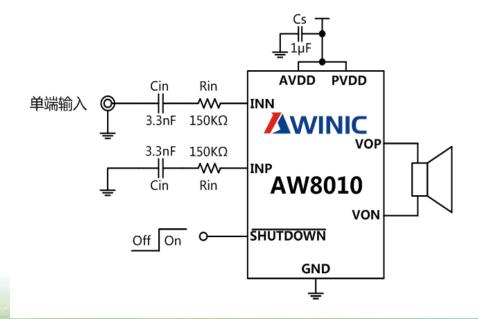
- ∮ PCB设计中EMI抑制:
  - ✓ 尽可能缩短音频输出走线
  - ✓ 音频输出线远离FM器件、天线及模拟电视模块
  - ✓ 当输出布线过于接近EMI敏感器件时,建议采用磁珠、电容
  - ✓ 磁珠与电容尽可能靠近功放放置




### 艾为CLASS-D音乐功放

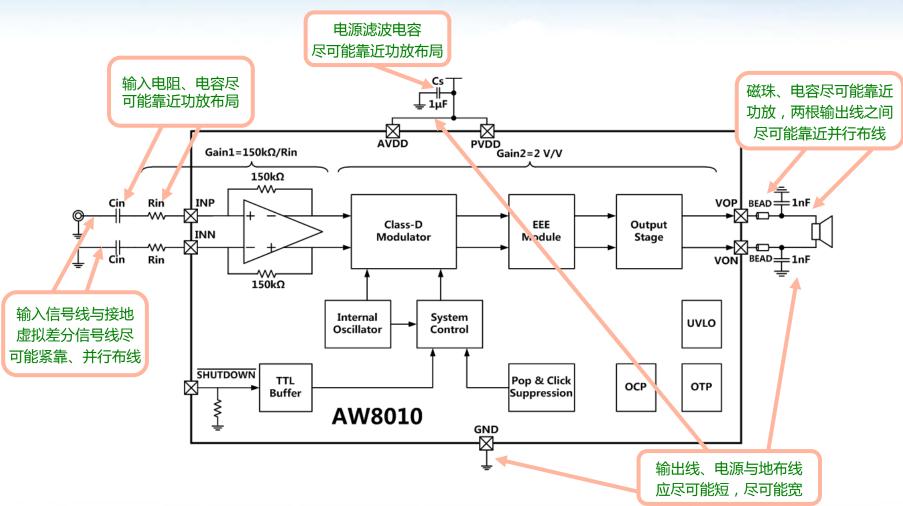


### § AW8010


- ✓ EEE技术,优异的全带宽EMI抑制能力 不会对FM及模拟电视产生EMI干扰
- ✓ 3W输出功率
- ✓ 0.03%THD+N,全频带清晰音质
- ✓ 高PSRR: -80dB(217Hz)
- ✓ 优异的Pop-Click抑制电路
- ✓ 高达90%的效率
- ✓ 无需滤波器Class-D结构
- ✓ 过流,过热保护电路
- √ ±8KV ESD
- ✓ ±450mA Latch-Up
- ✓ 兼容TPA2010



超低EMI


3W输出功率

CSP9



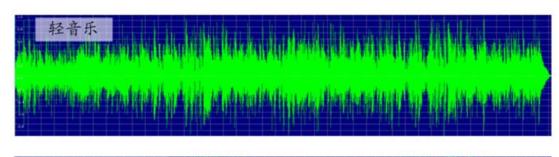
## 艾为音乐功放AW8010应用

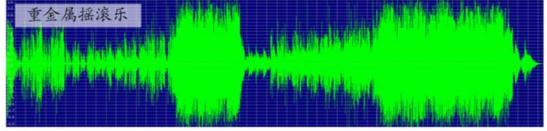




THE PARTY CONTRACTOR OF STREET, THE PARTY CONTRACTOR OF STREET




# NCN--防破音技术




AWINIC MUSIC-PA

### 音频应用挑战之破音

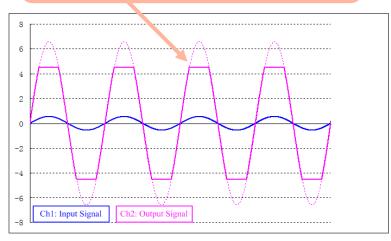






- ♦ 长时间的破音播放带来损害:
  - 音频信号削波失真,声音刺耳难听,"糊"了
  - 对扬声器造成永久性损伤,造成产品返修

### NCN--艾为防破音技术




### MCN (Non-Crack-Noise)


自动检测音频输出过载,调节系统增益,保证音频输出不出现破音失真,音乐圆润动听,并且悦耳响亮。

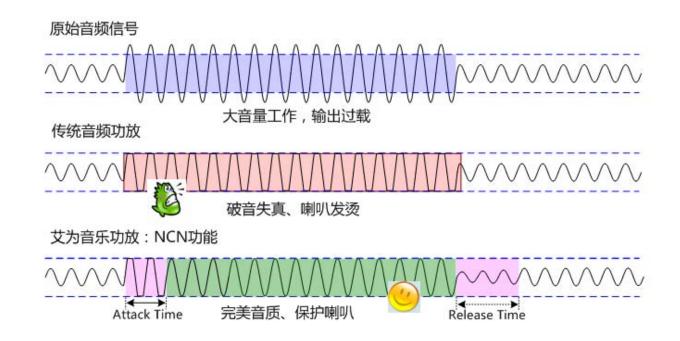
#### 传统D类功放:

音频输出严重削波,声音刺耳乏味



### 艾为D类功放(NCN): 音频输出依旧平滑,声音舒适悦耳



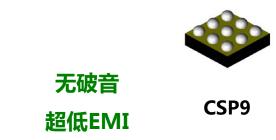


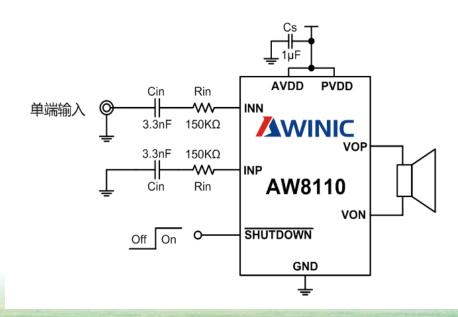



## 艾为防破音技术特性



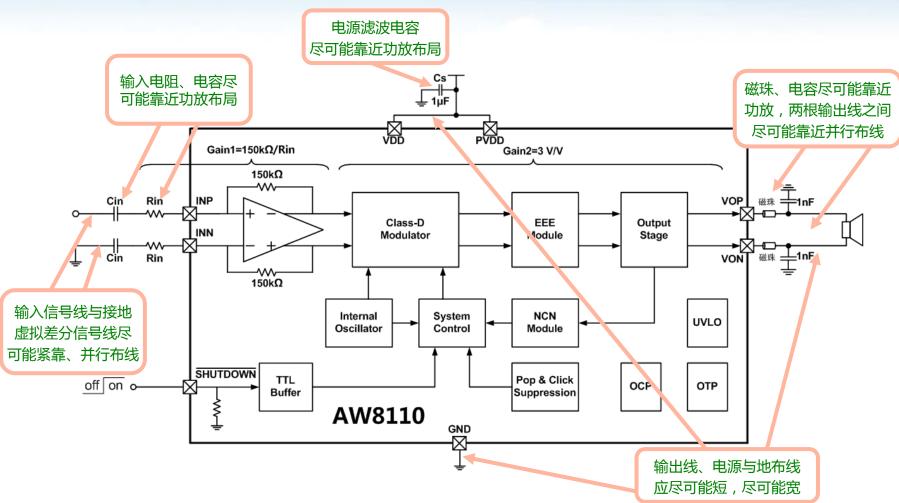
- - ✓ 音质好,无破音,带来舒适听觉感受
  - ✓ 合理的防破音参数配置,带来舒适的听觉体验
  - ✓ 有效地保护扬声器,大大减少产品返修率
  - ✓ 芯片不发烫,播放时间比传统D类功放更长





## 艾为CLASS-D音乐功放



### § AW8110


- ✓ 无破音(NCN)技术,带来舒适听音 享受,并有效保护扬声器
- ✓ EEE技术,优异的全带宽EMI抑制能力 不会对FM及模拟电视产生EMI干扰
- ✓ 0.04%THD+N,全频带清晰音质
- ✓ 优异的Pop-Click抑制电路
- ✓ 高PSRR: -80dB(217Hz)
- ✓ 3W输出功率
- ✓ 无需滤波器Class-D结构
- ✓ 过流,过热保护电路
- ✓ ±8KV ESD
- ✓ ±450mA Latch-Up
- ✓ 向下兼容TPA2010

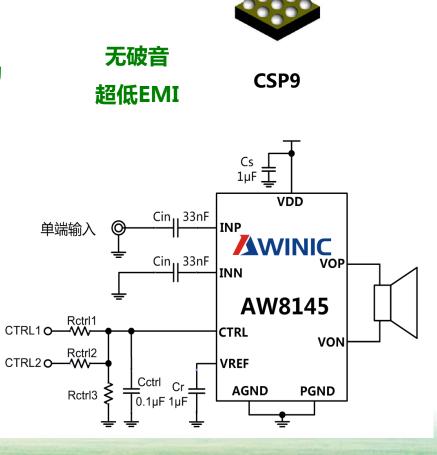




## 艾为音乐功放AW8110应用






THE WAS ELVER STORY WHEN HE THOUGH THE

## 艾为CLASS-D音乐功放



### § AW8145

- ✓ 无破音(NCN)技术,带来舒适听音 享受,并有效保护扬声器
- ✓ EEE技术,优异的全带宽EMI抑制能力 不会对FM及模拟电视产生EMI干扰
- ✓ 0.05%THD+N,全带宽清晰音质
- ✓ 3W输出功率
- ✓ 无需滤波器Class-D结构
- ✓ 优异的Pop-Click抑制电路
- ✓ 高PSRR: -80dB(217Hz)
- ✓ 过流,过热保护电路
- √ ±8KV ESD
- ✓ ±450mA Latch-Up

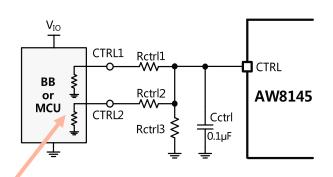


## AW8145--防破音,超低EMI



### ∮ AW8145应用:

- ✓ 三种模式可选: NCN1、NCN2、NCNOFF
- ✓ 针对不同场合,客户可以选择不同模式
- ✓ 通过CTRL引脚外围设置实现


要求使用带有下拉的GPIO端口作为 CTRL1与CTRL2的控制端口。

#### 音乐流畅动听

| Mode | Attack Time | Release Time | Application |
|------|-------------|--------------|-------------|
| NCN1 | 45ms        | 2.6s         | Music       |
| NCN2 | 10ms        | 1.2s         | Voice       |

语音圆润平滑

#### 工作模式设定(一)



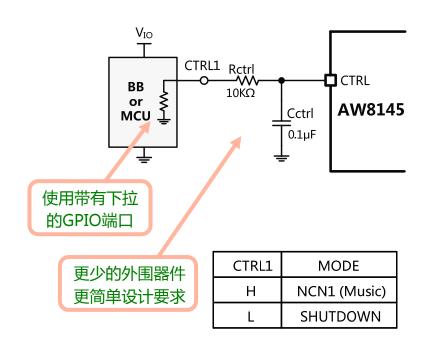
使用带有下拉的 GPIO接口

| CTRL1 | CTRL2 | Mode         |  |
|-------|-------|--------------|--|
| Н     | Н     | NCN1 (Music) |  |
| Н     | L     | NCN2 (Voice) |  |
| L     | Н     | NCNOFF       |  |
| L     | L     | SHUTDOWN     |  |

### AW8145--防破音,超低EMI

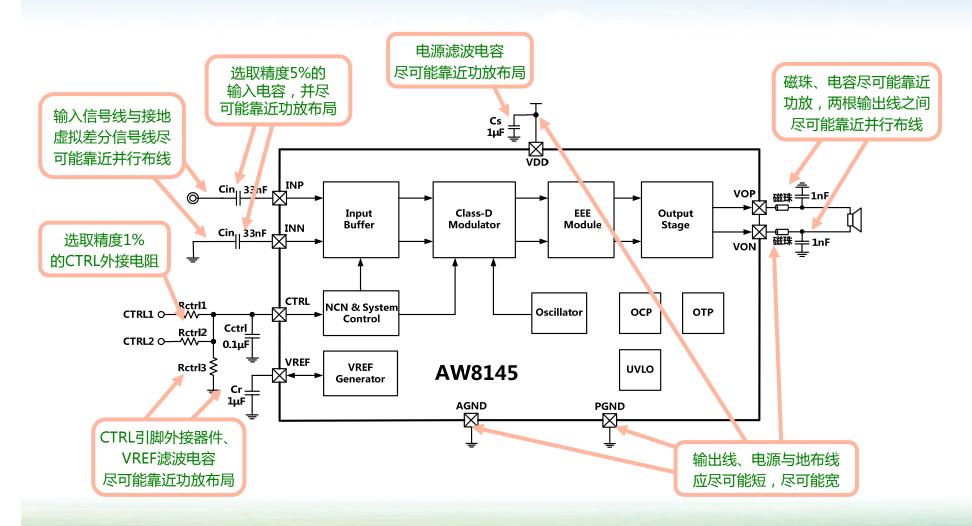


### ∮ AW8145应用:


手机应用中更多的是音乐场合 您希望

- ✓ 更方便简化的设计
- ✓ 更少的成本,更少的外围器件

AW8145提供简化的应用环境设置,系统设定NCN1为默认模式,只需将CTRL视为通用的使能引脚即可。


要求使用带有下拉的GPIO端口作为 CTRL1的控制端口。

#### 工作模式设定(二)



### 艾为音乐功放AW8145应用





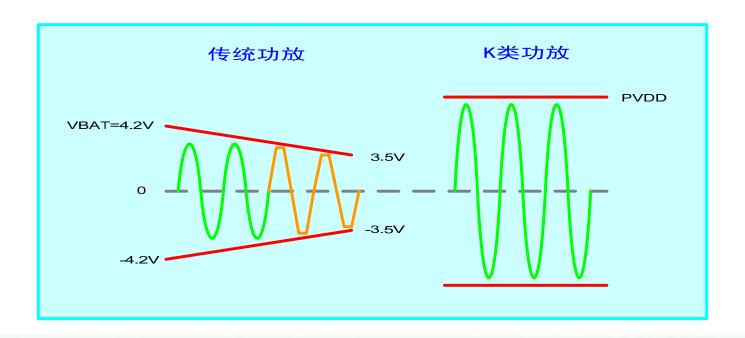
the transfer of the second second



# K类音响功放--震撼听觉感受






### ∮ 电源电压--输出功率的天花板

在便携产品中,通常采用锂电池供电,锂电池的电压范围是4.2V~3.5V,而大部分时间停留在3.7V左右,所以传统功放由于受到锂电池电压的限制,只能为8欧姆喇叭提供0.8W左右的功率,难以满足用户对便携产品大音量的需求。



### ∮ 解决方案--提升电源电压

要实现大音量输出突破锂电池电压这个瓶颈是关键,唯一的解决方案是利用升压电路提升电源电压。



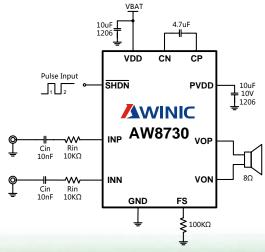


### ∮ 同类方案优缺点比较

| 产品名称    | 升压原理  | 工作方式 | EMI抑制技术 | 防破音 | 其它           |
|---------|-------|------|---------|-----|--------------|
| TPA2014 | 电感升压  | D类   | 无       | 无   | 需要大电感<br>成本高 |
| NCP2830 | 电荷泵   | D类   | 无       | 无   | 驱动能力弱        |
| MAX9730 | 负电荷泵  | G类   | 无       | 无   | 负压工艺         |
| AW8730  | 2X电荷泵 | K类   | EEE技术   | 有   | 高压工艺         |

## 艾为K类音响功放

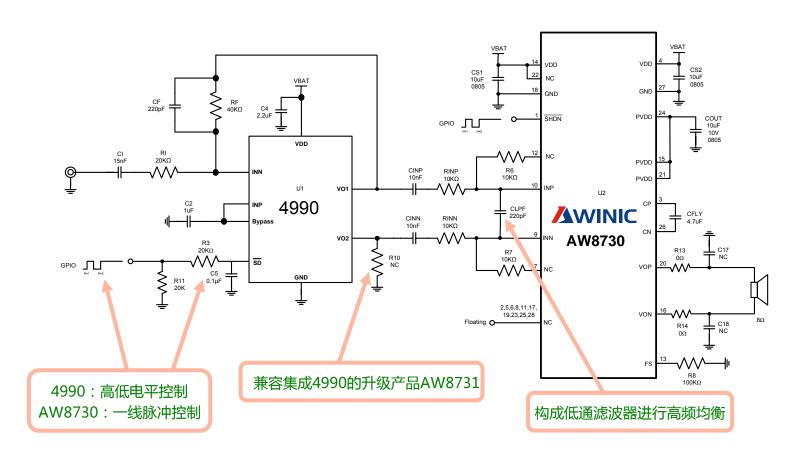



You win! We win! All win!!

### **AW8730**

- ✓ 独创的K类音乐功放结构:升压+D类+EEE+NCN
- ✓ 采用合作开发的高压工艺
- ✓ 内部集成升压电路
- ✓ 锂电池供电时输出恒定
- ✓ 具有防破音 (NCN)功能
- ✓ 一线脉冲方式控制
- ✓ 4mm×4mm 28-Pin TQFN封装








## AW8730的应用说明



You win! We win! All win!!



## AW8730的应用说明(续)



You win! We win! All win!!

### 

两种状态:状态1:增益为12dB,没有防破音(NCN)功能;

状态2:增益为16dB,打开防破音功能。

推荐: T<sub>HI</sub>=1us , T<sub>LO</sub>=1us , T<sub>OFF</sub>>250us , 一线脉冲控制的时序图如下:



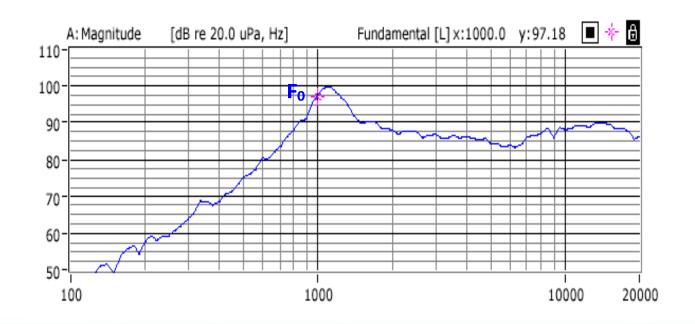
### ∮ 喇叭选择

推荐使用带音腔盒的,额定功率2W左右,8Ω的纸盆喇叭。





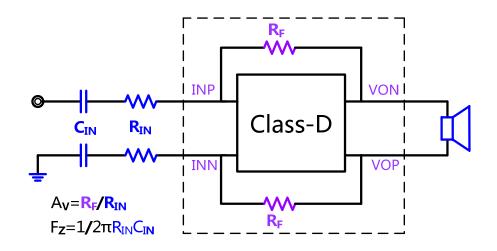
# 合理音频配置--实现完美音质




### 选取合适的喇叭



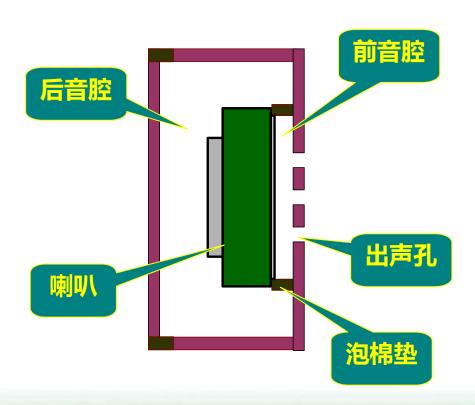
### ∮ 如何选取合适的喇叭


- ✓ 最低谐振频率F<sub>0</sub>比较小 → 更好的低频效果
- ✓ 声压特性比较高 → 更大的音量
- ✓ 喇叭口径与音腔大小协调配合 → 小喇叭+音腔 > 大喇叭+无音腔



### 音乐功放外围配置



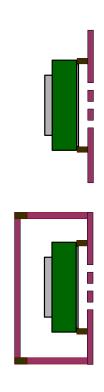

- - ✓ BB的输出不宜过大,否则会造成音源本身就失真
  - ✓ 功放放大倍数据音量要求设置,有防破音功能时适当设置较大的放大倍数,可获得更好的整体音效
- ∮ 输入高通极点Fz设置
  - ✓ 高通极点设置须和喇叭F<sub>0</sub>配合设定
  - ✓ 喇叭 $F_0$ 比较低,可设定 $F_Z^{\check{r}}$ 小一些,获得更好的低频效果;若喇叭 $F_0$ 比较高,则可适当增大 $F_7$

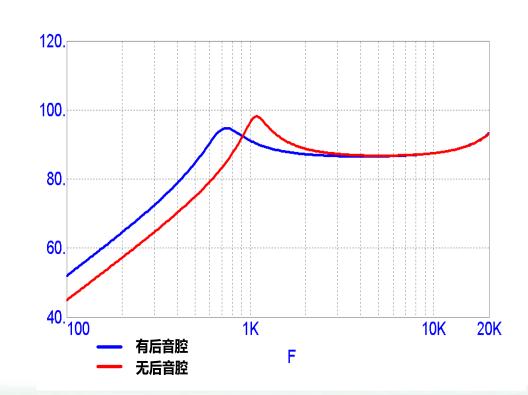


## 音腔--出众音效的必要条件



- ∮ 喇叭、音腔结构设计
  - ✓ 喇叭要良好固定,否则会产生杂音
  - ✓ 喇叭本体须与PCB板之间保留空隙,无法做到时须用泡棉垫起隔离



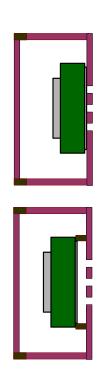


## 后音腔设计

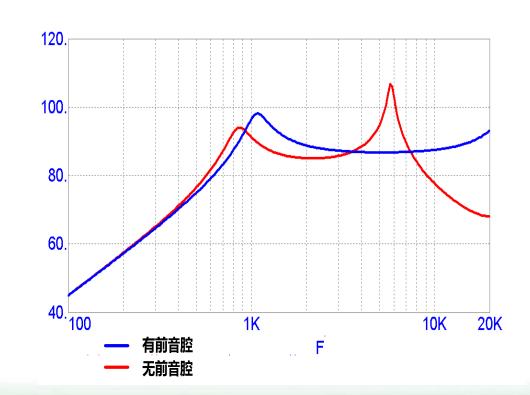


### ∮ 后音腔设计

- ✓ 后腔密闭可避免漏音,获得更大的音量
- ✓ 后音腔越大,低频音越丰富,低频效果越好



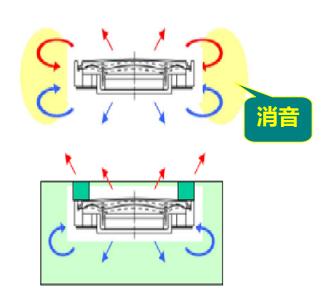


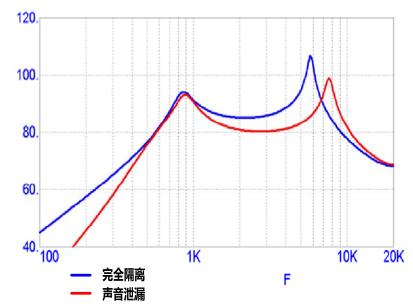


## 前音腔设计



### ∮ 前音腔设计

- ✓ 一定体积的前腔设计可获得更平坦的高频特性响应
- ✓ 前音腔可增强声音指向性,使得高频更清晰
- ✓ 出声孔面积不能开的太小,否则会造成声音过小,声音不清晰




## 前腔与后腔的隔离



- ∮ 前、后音腔的隔离
  - ✓ 前、后腔的声音泄漏会造成相位干涉从而发生消音,尤其是对低频
  - ✓ 前、后腔的良好隔离有助于提升低频效果





## 设计实例



- ∮ 合理的音腔设计
  - ✓ 尽可能的增大后音腔,实现更好的低频效果
  - ✓ 保留一定的前腔,适当大的出音孔,实现更清晰的高频音效
  - ✓ 利用泡棉实现完全隔离,大大提升音量和音质





使用泡棉垫,更好地实现后腔密闭及前后腔隔离

