

Latest Version: 1.0

2015-06-09

Declaration

Circuit diagrams and other information relating to products of Actions Semiconductor Company, Ltd. ("Actions") are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction is not necessarily given. Although the information has been examined and is believed to be accurate, Actions makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and disclaims any responsibility for inaccuracies. Information in this document is provided solely to enable use of Actions' products. The information presented in this document does not form part of any quotation or contract of sale. Actions assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of Actions' products, except as expressed in Actions' Terms and Conditions of Sale for. All sales of any Actions products are conditional on your agreement of the terms and conditions of recently dated version of Actions' Terms and Conditions of Sale agreement Dated before the date of your order.

This information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights, copyright, trademark rights, rights in trade secrets and/or know how, or any other intellectual property rights of Actions or others, however denominated, whether by express or implied representation, by estoppel, or otherwise.

Information Documented here relates solely to Actions products described herein supersedes, as of the release date of this publication, all previously published data and specifications relating to such products provided by Actions or by any other person purporting to distribute such information. Actions reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your Actions sales representative to obtain the latest specifications before placing your product order. Actions product may contain design defects or errors known as anomalies or errata which may cause the products functions to deviate from published specifications. Anomaly or "errata" sheets relating to currently characterized anomalies or errata are available upon request. Designers must not rely on the absence or characteristics of any features or instructions of Actions' products marked "reserved" or "undefined." Actions reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Actions' products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of Actions and further testing and/or modification will be fully at the risk of the customer.

Copies of this document and/or other Actions product literature, as well as the Terms and Conditions of Sale Agreement, may be obtained from an authorized Actions representative. The word "ACTIONS", the Actions' LOGO, whether used separately and/or in combination, and the phase "ATS2823", are trademarks of Actions Semiconductor Company, Ltd., Names and brands of other companies and their products that may from time to time descriptively appear in this product data sheet are the trademarks of their respective holders; no affiliation, authorization, or endorsement by such persons is claimed or implied except as may be expressly stated therein.

ACTIONS DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE.

IN NO EVENT SHALL ACTIONS BE RELIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF ACTIONS OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER ACTIONS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR NOT.

List of Contents

Declaration	2
List of Contents	
Features	
Applications	
Application Diagram	
Specifications	
Electrical Characteristics	
AUDIO Features	
RF Characteristics	3
PMU Characteristics	3
Module Pin definitions	3
Pin Configurations	3
Module Package Information	3
Document History	3
Contact Information	

Features

- 104 MHz MIPS32 Processor and 180 MHz DSP
- Internal ROM and serial flash memory interface supporting randomizer
- Internal RAM for data and program
- Built-in high performance stereo 24 bit DAC & ADC
- Supports Digital microphones, single-ended Analog microphones and full difference microphone
- Built-in stereo PA for headphone and differential audio output for speaker PA
- Bluetooth V4.1 compatible with Bluetooth V4.1 (BLE), V3.0, V2.1 systems
- Bluetooth fast AGC control to improve receiving dynamic range
- Supports AFH to dynamically detect channel quality to improve Bluetooth transmission quality
- Support SD/MMC/eMMC card interface for upgrade software
- SPI Nor Flash interface
- Audio Interfaces: SPDIF TX
- Serial Interfaces: UART, SPI
- Infrared Remote controller supported
- Integrated PMU supports multiple low energy States
- Integrated Linear battery charger up to 600mA charging current
- PCB Dimension: 15.9mm (L) × 13.7mm (W) × 0.8mm (H)

Applications

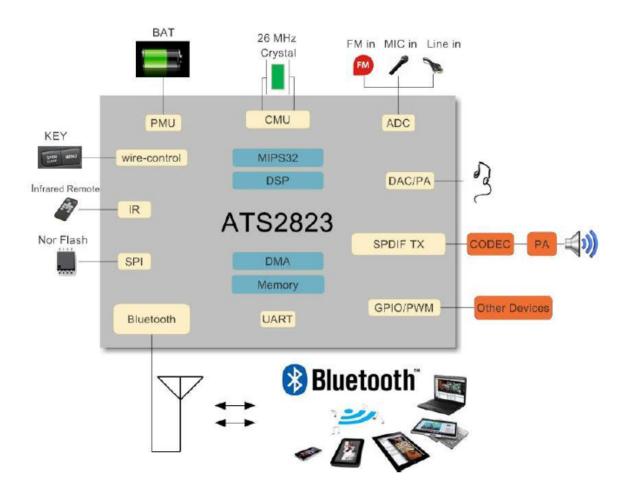
- Stereo headsets and headphones
- Portable stereo speakers and speakerphones
- Bluetooth car audio unit
- Bluetooth sound bar

More Information please visit: http://www.actions-semi.com

ATS2823 Bluetooth Module

Bluetooth Audio Solution

Low Power Solution for Portable&Wireless Audio Applications Speaker and Headphone


MIPS + DSP Dual-core Single-chip Bluetooth V4.1 Revision V1.0

ATS2823 provides wireless and local high quality music and support wireless calls with low power and BOM, making it competitive at high-end Bluetooth audio products market. Above all, ATS2823 delivers a true "ALL-IN-ONE" solution; it is the ideal choice for Single-chip wireless and audio application

Application Diagram

Specifications

Operating Frequency Band	2.4GHz ~ 2.48GHz unlicensed ISM band
Bluetooth Specification	V2.1+EDR/V3.0/V4.0/ V4.1(BLE)
Bluetooth Protocol	A2DP,AVRCP,HFP,SPP BAS,DIS,FMP,HRP,HRS,HTP,HTS,IAS,LLS
Output Power Class	Class 2
Operating Voltage	Core :1.2V, IO:3.3V, BAT:3.4V~4.2V
Operating temperate range	-10 °C ~ +70 °C
External Interface	UART,SPI,IR, DMIC, SPDIF TX

Copyright© 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

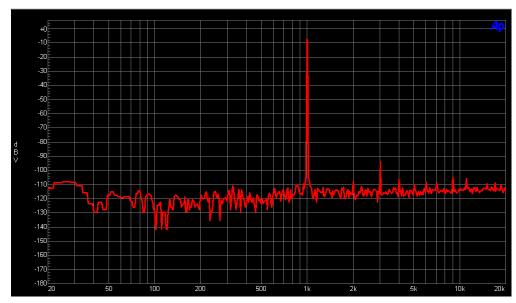
Electrical Characteristics

Absolute Maximum Ratings						
Parameter	Symbol	Min	Max	Unit		
Temperature	Storage temperature (Tstg)	-55	+150	°C		
ESD Stress voltage	Vesd (Human body model)	2000	-	V		
	DC5V	-0.3	9.0	V		
Supply Voltage	BAT	-0.3	5.0	V		
Supply Voltage	VCC/AVCC/BTVCC	-0.3	3.6	V		
	VDD	-0.3	1.32	V		
Innut Valtage	3.3V IO	-0.3	3.6	V		
Input Voltage	1.2V IO	-0.3	1.32	V		

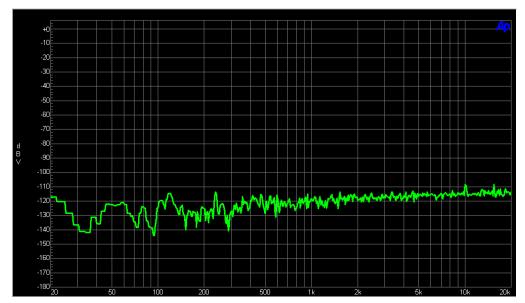
Recommended Power Supply								
Supply Voltage Min Typ Max Unit								
BAT (Li)	3.4	3.8	4.3	V				
DC5V	4.5	5.0	7.0	V				
VCC/AVCC/BTVCC	2.8	3.1	3.4	V				
VD15	1.0	1.5	1.7	V				
VDD/RTCVDD	1.08	1.2	1.32	V				
VD12	0.8	1.05	1.5	V				

Regulators Maximum Output Current						
Block Name Output Voltage Load Capacity						
VCC	2.7V ~ 3.4V	300mA				
VDD	$0.8V \sim 1.32V$	100mA				
VD15	1.0V ~ 1.7V	170mA				
BTVCC	2.8V ~ 3.5V	100mA				
AVCC	VCC - 0.15V	50mA@98%				

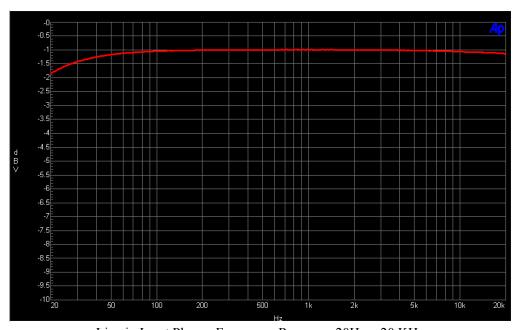
Note: The output voltages are precisely within $\pm 2\%$, providing large currents with a significantly small dropout voltage within $\pm 5\%$.

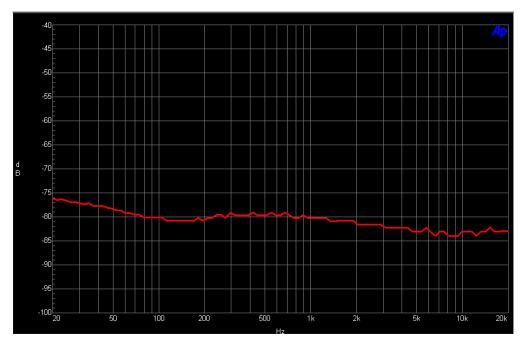

AUDIO Features

Test Condition: Power BAT=3.8V, Analog audio output AOUTL/R, Load = 10K ohm, BW=20Hz ~ 20 KHz, A-Weight. Test equipment: AP2700.

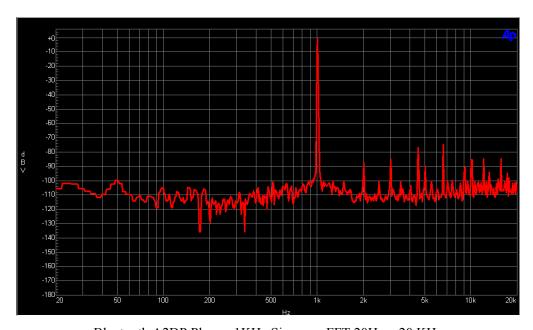

	DAC/ADC Sampling rate	Max: 48K Typical: 44.1K Min: 8K
Audio Codec	DAC SNR	Max: 102dB Typical: 99dB
(1KHz,A weight)	ADC SNR	Max: 90 dB Typical: 87 dB
(TKHZ,A Weight)	DAC THD+N	Min: -87dB Typical: -85 dB
	ADC THD+N	Min: -82dB Typical: -80 dB
	Output Level	Max: 960mVrms Typical: 940 mVrms
Audio performance DAC	Ground Noise	Max: 10 uV Typical: 7 uV
(0Hz/1KHz,A weight)	Dynamic Range	Max: 102 dB Typical: 99dB
(OHZ/HRHZ,/1 WOIGHt)	Crosstalk	Min: -100 dB Typical: -96dB
	Frequency Response	20Hz ~20KHz
	Input Level THD+N <1%	Max : 980mVrms Min :
Ali- m-mf-mm-a- ADC	Ground Noise	Max: 40 uVrms Typical: 30 uVrms
Audio performance ADC	Dynamic Range	Max: 85 dB Typical: 82dB
(0Hz/1KHz,A weight)	Crosstalk	Min: -85 dB Typical: -82dB
	Frequency Response	20Hz ~20KHz

DAC/ADC audio output performance chart:

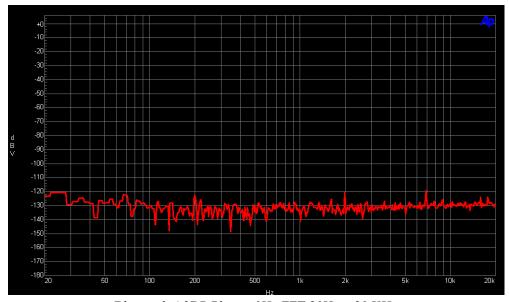

Line in Input Mode:


Line in Input player: 1KHz Sin wave FFT 20Hz ~ 20 KHz

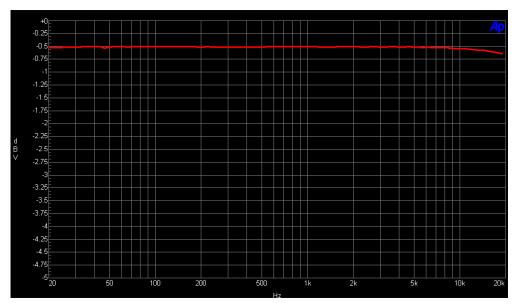
Line in Input player: 0KHz FFT 20Hz ~ 20 KHz



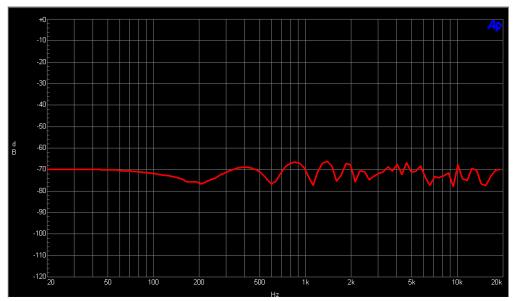
Line in Input Player: Frequency Response $20 \text{Hz} \sim 20 \text{ KHz}$



Line in Input player: THD+N Distortion 20Hz ~ 20 KHz


Bluetooth Player Music Mode:

Bluetooth A2DP Player: 1KHz Sin wave FFT $20\text{Hz} \sim 20 \text{ KHz}$


Bluetooth A2DP Player: 0Hz FFT 20Hz \sim 20 KHz

Bluetooth A2DP Player: Frequency Response $20\text{Hz} \sim 20 \text{ KHz}$

Page 9

Copyright© 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Bluetooth A2DP Player: THD+N Distortion $20\text{Hz} \sim 20 \text{ KHz}$

RF Characteristics

		A2DP1.3			
BT Protocols	A2DP/AVRCP/HFP	AVRCP1.6			
DI FIOLOCOIS	/SPP	HFP1.7			
		SPP1.2			
A2DP		Typical: 19mA			
HFP		Typical: 22mA			
Power Consumption	Sniff	Typical: 0.6mA			
Standby		Typical : 38uA			
Distance	A2DP	Max:50M Typical: 20M			
Distance	HFP	Max: 20M Typical: 10M			

Copyright© 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved. Version 1.0 Page 10

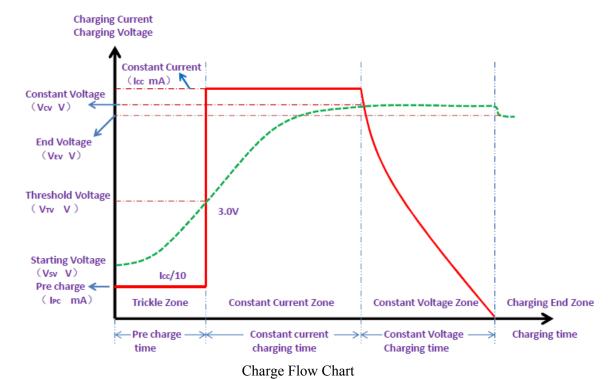
Basic Data Rate of Transmitter								
Core Supply Voltage = 1.05V @ Tamb=25°C								
Parameter	Condition	Min.	Тур.	Max.	Unit			
Maximum RF Transmit			2	4	dBm			
Power			2	4	UDIII			
RF Power Control Range		2	3	8	dB			
20dB Bandwidth for			020	000	1/11-			
Modulated Carrier			930	990	KHz			
	+2 MHz	-47	-52		dBm			
Adjacent Channel Transmit	-2 MHz	-51	-52		dBm			
	+3 MHz	-40	-58		dBm			
	-3 MHz	-56	-57		dBm			
	Δflavg Maximum	140	170	175	KHz			
Frequency Deviation	Δf2max Maximum	100%	100%					
	Δflavg/Δf2avg	0.89	0.9	0.91				
Initial Carrier Frequency		3	5	(KHz			
Tolerance		3	3	6	KHZ			
	HD1 Packet	-9	-8	8	KHz			
Frequency Drift	HD3 Packet	-8	-9	-10	KHz			
	HD5 Packet	-10	-7	-6	KHz			
Frequency Drift Rate		3	4	5	KHz/50us			
Harmonic Content			-50		dBm			

Enhanced Data Rate of Transmitter						
Core Supply Voltage =1. 05V	@ Tamb=25℃					
Parameter	Condition	Min.	Тур.	Max.	Unit	
Relative Transmit Power			-0.4		dB	
$\pi/4$ DQPSK max carrier frequency stability $ \omega_0 $		-10		10	KHz	
$\pi/4$ DQPSK max carrier frequency stability $ \omega_i $		-75		75	KHz	
$\pi/4$ DQPSK max carrier frequency stability $ \omega_0+\omega_i $		-75		75	KHz	
8DPSK max carrier frequency stability $ \omega_0 $		-10		10	KHz	
8DPSK max carrier frequency stability ω _i		-75		75	KHz	

8DPSK max carrier frequency stability ω ₀ +ω _i		-75		75	KHz
-/4 DODGE Madalatian	RMS DEVIN		7	20	%
π/4 DQPSK Modulation	99% DEVM	99	100		%
Accuracy	Peak DEVM		18	35	%
ODDCI/ Madadatian	RMS DEVIN		6	13	%
8DPSK Modulation	99% DEVM	99	100		%
Accuracy	Peak DEVM		18	25	%
	F > F0 + 3MHz			-40	dBm
	F < F0 - 3MHz			-40	dBm
	F = F0 + 3MHz			-40	dBm
In hand anymians amissions	F = F0 - 3MHz			-40	dBm
In-band spurious emissions	F = F0 + 2MHz			-20	dBm
	F = F0 - 2MHz			-20	dBm
	F = F0 + 1MHz			-26	dB
	F = F0 - 1MHz			-26	dB
EDR Differential Phase Encoding		99	100		%

Basic Data Rate of Receiver						
Core Supply Voltage =1. 05V(@ Tamb=25℃					
Parameter	Condition	Min.	Typ.	Max.	Unit	
	2.404GHz		-90		dBm	
Sensitivity at 0.1% BER	2.441GHz		-90		dBm	
	2.480GHz		-90		dBm	
Maximum Input Power at 0.1% BER		-20			dBm	
Co-Channel Interface				11	dB	
	$F = F_0 + 1MHz$			0	dB	
	$F = F_0 - 1MHz$			0	dB	
Adjacent Channel Selectivity	$F = F_0 + 2MHz$			-20	dB	
C/I	$F = F_0 - 2MHz$			-20	dB	
	$F = F_0 + 3MHz$			-40	dB	
	$F = F_{image}$			-9	dB	
Maximum Level of Intermediation Interface	_	-39			dBm	

	30-2000 MHz	-10	-8	dBm
Blocking @ Pin = -67dBm	2000-2400 MHz	-27	-25	dBm
with 0.1% BER	2500-3000 MHz	-27	-25	dBm
	3000-12750 MHz	-10	-8	dBm

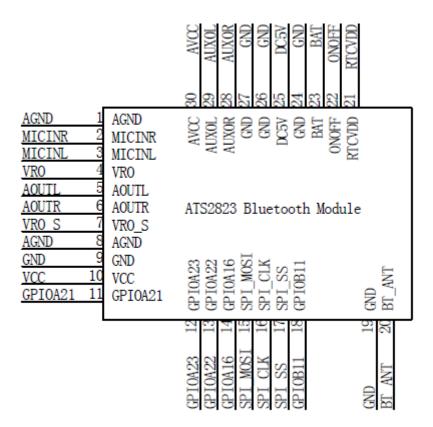

Enhanced Data Rate of Receiver							
Core Supply Voltage = 1. 05V @ Tamb=25°C							
Parameter	Condition		Min.	Typ.	Max.	Unit	
Sensitivity at 0.01%	π/4 DQPSK			-88		dBm	
BER	8DPSK			-82		dBm	
Maximum Input	π/4 DQPSK		-20			dBm	
Power at 0.1% BER	8DPSK		-20			dBm	
Co-Channel	π/4 DQPSK			13		dB	
Interference	8DPSK			21		dB	
Adjacent Channel Selectivity C/I	$F = F_0 + 1MHz$	π/4 DQPSK		0		dB	
		8DPSK		5		dB	
	$F = F_0 - 1MHz$	π/4 DQPSK		0		dB	
		8DPSK		5		dB	
	$F = F_0 + 2MHz$	π/4 DQPSK		-30		dB	
		8DPSK		-25		dB	
	$F = F_0 - 2MHz$	π/4 DQPSK		-20		dB	
		8DPSK		-13		dB	
	$F = F_0 + 3MHz$	π/4 DQPSK		-40		dB	
		8DPSK		-33		dB	
	$F = F_{image}$	π/4 DQPSK		-7		dB	
		8DPSK		0		dB	

PMU Characteristics

PMU	Charging current	Max: 600mA Typical: 500mA			
TWIO	Charger input voltage	Max: 7.0V Typical: 5V Min: 4.5V			
Power Consumption (10Kohm load)	Test conditions:				
	BAT=3.8V, VCC=3.1V, VDD=1.0V, Tamb=25°C				
	Standby	38 uA (type)			
	Line in music play	10.4 mA (type)			
	Bluetooth music play	16mA ~ 20mA			
	Bluetooth hands free	18mA ~ 22mA			

Charge Flow Chart and Settings:

Note:

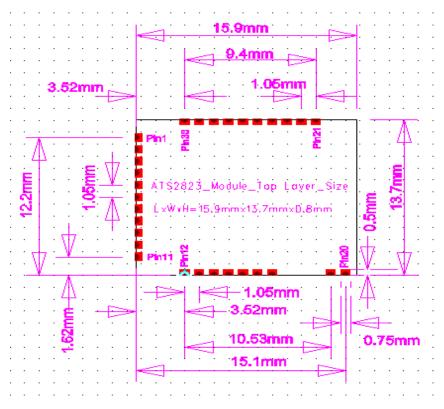

- 1. Charging process is divided into 3 stages: the pre charge process, the constant current process and the constant voltage process.
- 2. The pre charge current (I_{PC}) is 0.1 times the constant current charge current (I_{CC}). Or I_{PC} = 0.1 × I_{CC} (mA); Disable this function by set [CHG_CTL.bit14] =0, default is disable.

Copyright© 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

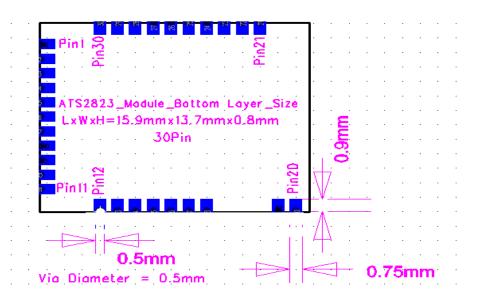
- 3. When the starting charge voltage to 3.0V (V_{TV}), the pre charging process is over, and the charging process is entered into the constant current charging process.
- 4. Set the constant current charging current **I**cc, constant current charge continues to the battery voltage to **V**cv, switch to the constant voltage charging process. **I**cc current can be set with 8 levels of parameters: 000:25mA, 001:50mA, 010:100mA, 011:200mA, 100:300mA, 101:400mA, 110:500mA, 111:600mA.
- 5. Vcv voltage can be set with 8 levels of parameters: 000:4.2V, 001:4.23V, 010:4.26V, 011:4.29V, 100:4.32V, 101:4.35V, 110:4.38V, 111:4.41V.
- 6. After the end of the charge, the Li-BAT voltage is generally V_{EV} = 4.18V±0.05V.

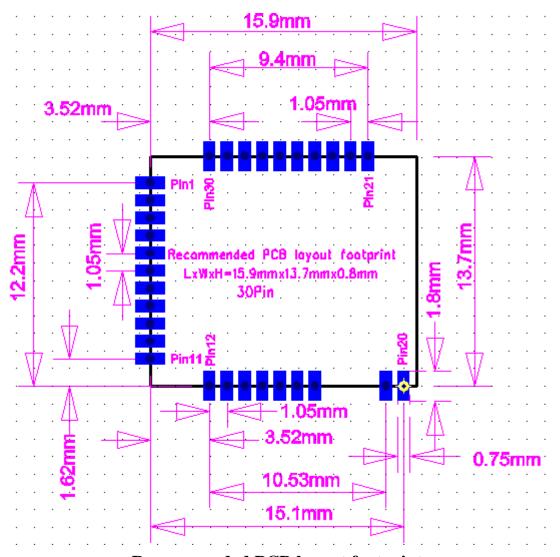
Module Pin definitions

 $L \times W \times H = 15.9 \text{mm} \times 13.7 \text{mm} \times 0.8 \text{mm}$



Pin Configurations


PIN NO.	NAME	ТҮРЕ	FUNCTION	
1	AGND	Power ground	Analog ground	
2	MICINR	Analog input	MIC right channel input	
3	MICINL	Analog input	MIC left channel input	
4	VRO	Analog output	Virtual Ground for PA	
5	AOUTL	Analog output	Left channel of PA	
6	AOUTR	Analog output	Right channel of PA	
7	VRO_S	Analog input	VRO Sense for PA	
8	AGND	Power ground	Analog ground	
9	GND	Power ground	Ground	
10	VCC	Power output	3.3V power supply	
11	GPIOA21	Bi-directional	General Purpose Input Output: A21	
12	GPIOA23	Bi-directional	General Purpose Input Output: A23	
13	GPIOA22	Bi-directional	General Purpose Input Output: A22	
14	GPIOA16	Bi-directional	General Purpose Input Output: A16	
15	SPI_MOSI	Bi-directional	SPI data	
16	SPI_CLK	Bi-directional	SPI clock	
17	SPI_SS	Bi-directional	SPI chip enable	
18	GPIOB11	Bi-directional	General Purpose Input Output: B11	
19	GND	Power ground	Ground	
20	BT_ANT	Bi-directional	Bluetooth antenna junction	
21	RTCVDD	Power output	power for RTC Module, typical voltage: 1.2V	
22	ONOFF	Input	Power on/off	
23	BAT	Power input	Battery input, typical voltage range:3.4V~4.2V	
24	GND	Power ground	Ground	
25	DC5V	Power input	Charge power input ,typical voltage range:4.5V~7.0V	
26	GND	Power ground	Ground	
27	GND	Power ground	Ground	
28	AUX0R	Analog input	AUX0 right channel input	
29	AUX0L	Analog input	AUX0 left channel input	
30	AVCC	Power output	Power for Analog module, typical voltage:2.95V	


Module Package Information

Module Dimension (Top VIEW)

Module Dimension (Bottom VIEW)

Recommended PCB layout footprint

Document History

Revision	Date	History
V1.0	2015/06/09	First release

Contact Information

Actions (Zhuhai) Technology Co., Limited

http://www.actions-semi.com

No. 1 / C, Ke Ji Si Road, Hi-Tech Zone,

Tangjia, Zhuhai Post Code: 519085

Fax: +86-756-3392251

Address:

Tel: +86-756-3392353

Business Email:

mmp-sales@actions-semi.com

Technical Service Email: mmp-cs@actions-semi.com